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France 

Onay Cedex, 

Received 21 June 1992 

Abstract. We present a construction, based on an R-matrix formalism, ofcovariant quantum 
superoscillator algebras for '?lq(gl(Ill)). We show that the complete structure of the 
oscillator algebras stems from a Suitable combination of properties of the R-matrix, 
covariance of the oscillators at the deformed level and associativity. 

Numerous systems of (bosonic and/or fermionic) q-oscillators have been proposed 
and used to construct realizations of quantum (super)algebras (see e.g. [I]). Most of 
these studies proceed in the spirit of the initial analysis of [2,3]. 

However, a natural scheme which preserves the covariance of the oscillators at the 
deformed level has been presented in [4] for SUJn).  This second approach can also 
be translated into the R-matrix formalism, a fact that has been exploited intensively 
for the quantum universal enveloping algebra QJsI(2)) in the analysis of [5], more 
directed towards applications to rational conformal field theory. 

The later R-matrix approach can also be applied to quantum universal enveloping 
super-algebras in view of the obtention of covariant q-superoscillator algebras. 

In the main part of this letter, we perform such a construction in the simple case 
of Qq(gl( l  ! 1)) for which the main steps of the algorithm can be easily followed. These 
steps are summarized beforehand together with some properties of the gl ( l I1)  super- 
algebra. The q-superoscillator algebras we find coincide with those derived in [ 6 ]  using 
a somewhat different approach. Their origin is more transparent within the present 
construction. 

The algorithm we use in this work can be applied to more complicated situations, 
in particular to Q,(osp(l, 2)) and Ql,(0sp(2, 2))t.  The corresponding analysis will 
appear elsewhere [7]. 

Thegl( 1 1) superalgebra (see [8] for properties of (classical) superalgebras) involves 
two even and two odd generators, denoted respectively by h, z and e,$ The following 
commutation relations hold 

[ z ,  e] = [ z , f ]  = [ z ,  h] = 0 
2 [h,  e] = e [ h , f ]  = -f { e , f }  = z e =f' = 0. 

( i j  

7 Unit6 de Recherche des Univenites Paris I I  et Paris 6 associhe au CNRS. 
$ These algebras are expected to be related to N = I and N = 2 superconformal theories. 
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In what follows, d( .) denotes a Z2-grading. An object x is said to be even (odd) if 
one has d(x)=O(l). One has the following useful formula: ( a O b ) ( c O d ) =  
(-l)dcb'd("'(ac)O(bd). Recall that gl(l I I )  is completely solvable; all its finite- 
dimensional irreducible representations are two dimensionalt [ 8 ] .  They are labelled 
by a pair of parameters ( 0 . p ) .  The generators can then be written as 

( 2 )  
z = (  P O  ) A = ( "  O ).  

O P  0 a- I  

By convention, the corresponding basis vectors (lel), le2)) satisfy d(le,)) = 
0, d(le2)) = 1. In the following, we choose for definiteness (a, p )  = ( f ,  1). The extension 
of the subsequent analysis to  arbitrary values is obvious and does not alter the 
conclusions as it will be shown. 

The Jordan-Bargmann-Schwinger type construction of an oscillator model for 
gl( 1 11) is straightforward. One introduces a pair of creation (resp. annihilation) 
operators (Z, 6) (resp. (a, b)), transforming under the (a, p )  = (f ,  1) representation of 
gl(1ll) (resp.transposed(-$, l)).Onehasd(Z)=d(a)=O,d(6))=d(b)=l.Then,one 
defines four bilinear TcM' in the creation and annihilation operators, generically 
written as 

(M = e , f ,  h, z given in (2) with U = f ,  p = 1). The four T'M' are easily found to satisfy 
the commutation relations for gl(ll1) given in (l), provided [a, Z] = {b ,  6} = 1, [a, 61 = 
[Z, b ] = [ E ,  6]=[0, b] = b 2 = 6 *  =O. 

We decided to extend the above construction to %,(gl( 1 11)) = 'p1, in such a way 
that covariance of the oscillators is preserved at the deformed level. This involves three 
basic ingredients: 

(i) The knowledge of the (braid) I?-matrix, built from the R-matrix. 
(ii) The requirement that the quadratic products of the creation operators transform 

under a given irreducible representation of aq appearing in the tensor product of two 
(i, 1) representations or, equivalently, that they are eigenvectors spanning a given 
eigensubspace of I? acting in p o p .  In what follows, p = P( , ,~ , , '  is the two-dimensional 

The condition (ii) fixes the q-deformed commutation relations among Z and 6, 
whereas those for the annihilation operators a and b are obtained by transposition. 

(iii) The requirement of associativity among the mixed products of q-oscillators 
finally leads to two distinct q-superoscillator algebras. 

Within the present construction, the '?&-covariance properties of the q-oscillators 
are induced by the coproduct with which %, is equipped. Notice that in the approach 
of [ 2 , 3 ] ,  the %,-transformation properties of the q-oscillators are lost. 

%',==..ndn!e correspnnding to (=, 6 )  = ( f ,  I). 

The relevant commutation relations for %, are 
I -1 

(3) 
{e,f}=%-[zl, q'e = eq' qff=fq' 

4 - 4  
q h e  = eqh+l  qhf = fqh-I. 

In the following, q is generic (i.e. not a root of unity). Then, the irreducible representa- 
tions of %q are in one-to-one correspondence with those of gl(l I I ) .  

t Apart from the trivial one-dimensional representation. 
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Let lel), le2) be the basis vectors spanning the two-dimensional Q9-module p. with 
d(lei))=0,d(le2))=1. One has 

(4) 

The associative algebra Q, is equipped with a coproduct A, an antipode y and a 

qhlel)= q1/’1e,) d e , )  = I e,) elei)=O f le,) = le2) 
qhle2)= q-1’21e2) q‘le2)= d e 2 )  ele2) = lel) f le2) = 0. 

co-unit E, respectively defined by 
A: Q, 9 qLq 0 Q, A(h) = hO 1 + 1 0 h  

A ( z ) = z @ 1 + 1 0 r  q‘=-h l /2@e+ , ~ ~ ( - h - ’ ) / 2  ( 5 )  
A(f) = q(h”)/20f+fOq(h--r)/2 

(6 )  
Y: Q9 -f ‘ I I9  

E :  Q,+C E ( h )  = E ( Z )  = &(e) = ~ ( f )  = 0. (7) 

Y(qh) = 4-h Y ( 4 7  = q-z 
( h + 1 ) / 2  ( h - r ) / 2  y(f) = - g ( z - h l / Z f q ( - h - ~ ) / 2  r ( e )= -q  eq 

These three algebra homomorphisms satisfy, for all x, y E qL9: 
(al) (idOA)A(x)= (AOid)A(x) 
(a2) (E@id)A(x)= (idOE)A(x) = x  
(a3) m ( i d 0  y)A(x)= m(y@id)A(x) = F ( x ) ~ ,  where m is the associative multipli- 

cation m: C,OQ,+Q,,m(xOy)=xy. 
There exists furthermore an invertible R-matrix, R E  C90C9,  verifying 
(bl) (u=-A)R=RA, with ~ ( x O y ) = ( - l ) ~ ‘ ” ’ ~ ‘ ~ )   YO^, 
(b2) (A0 id )R  = R,2R23, 
(b3) (idOA)R=R,,R,,, 
(b4) R,2R,,R2, = R2,R,3R,2 (graded Yang-Baxter equation), 

using me wproaucr (31, iogerner wiin (4) ana property { V I ) ,  me expression tor 
in usual notations. This ensures that Q, is a quasi-triangular Hopf algebra. 

the R-matrix acting in p o p ,  is easily found to  be 

I 7 - I ~ ~ -  AL. ,r\ I... *L.. ... :*L , I \  - ~ - 1  ,L., _ L ~  ~ ~ ~ ~ ~ ~ ~ - ~ I - ~ ~  P - -  

in the basis [elel), le,e2), le2e2) (leiej)= lei)Oe,)). 
Let 9’ be the (graded) permutation matrix, generically defined by 9’(lej)Olej))= 

( - l ) d ‘ ~ ~ ’ d ‘ ~ ~ ’ ~ e j ) O ~ e ~ ) .  From (8), the (braid) matrix l? = BR acting in p o p  is given by 

(9) 

and satisfies Ak =BA. 
eigenvectors are given by 

l? admits two doubly degenerate eigenvalues, f q  and -4 - l .  The corresponding 
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They are respectively associated with the '%,-symmetric' and '%,-antisymmetric' (two- 
dimensional) irreducible parts of the orthogonal decomposition 

(11) 
Let 10) and (01 be the ket and bra Fock vacua, assumed to be %,-invariant, that is, 

for all ~ E % ~ , x ~ O ) = E ( X ) ~ O ) , ( O ~ X = ( O ~ E ( X ) ,  with E definedin (7). 
One introduces a pair of creation operators, (d. 6), with d ( d )  = 0, d ( 6 )  = 1; d (resp. 

6) creates a state le,) (resp. (le2)). (a, 6) transforms under the irreducible two- 
dimensional (m, j?) = (f, I )  representation of %,. The corresponding %,-covariance 
properties are induced by the coproduct ( 5 ) ;  they will be listed below (see (16), (17)). 

Now the commutation relations among d and 6 are fixed by the irreducibility 
requirement (ii): the quadratic products in d and 6 must transform under the '%,- 
symmetric' irreducible part p$yT+41 in (11). This last choice is dictated by the fact that 
the q-oscillator algebras to be constructed involve simultaneously even and odd 
oscillators and that they must reduce to the undeformed case when q = 1. The condition 
(ii) requires that (ad, ab; 6ci, &) is an eigenvector of R with eigenvalue fq. Then, using 
(9), we obtain 

= p(8Ym.+d (arYm.-q-'l 
(1.2) OP(0.2,  . 

ad- q6a = 0 6 2  = 0. (12) 
A similar analysis gives, after transposition, the commutation relations for the 

ab-q- 'ba=O b* = 0. (13) 
Equations (12) (resp. (13)), acting on 10) (resp. (01) imply the vanishing of the Fock 

space realization of the (resp. transposed) %,-antisymmetric vectors (lob). 
Finally, the requirement of associativity among the mixed products of oscillators 

fixes the remaining commutation relations. After some calculations, we obtain two 
distinct q-superoscillator algebras given by 
Solution (I): equations (IZ), (13) 

annihilation operators (a, b). We get 

ab-q- '&a=o db-qbd=Q 
ad - q-2da = 1 
b6+ 6b = 1 - ( 1 - q-*)da 

(14) 

Solution (11): equations (12), (13) 

ab- q6a = 0 db-q-'bd=O 
ad - q2da = 1 -(I  - q2)6b 

b6+ 6b = 1. 

(15) 

Some comments are in order. 
It can be pointed out that the key of the present construction is the matrix l? = OR 

acting in p a p .  It can be practically determined from the coproduct ( 5 ) .  Then, the 
irreducibility requirement (ii) fixes the commutation relations among creation or 
annihilation operators which permit one to  obtain the complete q-superoscillator 
algebras by further demanding associativity. 

The relations (14), (15) coincide with those proposed in [6]. Their origin is made 
more transparent within the present algorithm. Notice also that the alBorithm can be 
applied to more complicated situations [7], once the corresponding R-matrix acting 
in the tensor product of two (actually fundamental) irreducible representations is 
determined. 
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The.structure of the coproduct A in (5) determines the Q,-transformations of the 
creation operators h and 6 These latter act as linear mappings from V, the set of 
tensor products of irreducible %,-modules, into itself for any I U ) E  V, one has filu)= 
Ie,)@lu), 40) = le2)@lu). Their natural transformations induced by the coproduct (5) 
are given by 

4 a - a q  4*6= &*+' q h 6 =  &hqh-1/2 q'fi = W+' h - -  - h+1/2 

(16) eh = ql/4de f i zq314-  + &(h--r)/Z 

- q 3 1 4 & + h q ( - h - x ) / 2  f6= -q1/4t)f 

and the %,-transformations for the annihilation operators are 

q h a = a q  h-1/2  ¶'a = qhb = bqh+l/2 q'b = bq'-' __ - "-3/4_"- ~ . _ ( h - x ) / 2  $A - , - 1 / 4 , ~  I , , \  
r u - y  " C  Ycj J " - Y  "J ( " 1  

eb = -q-'l4be f b  = -¶-3/4bf + aq( -h -* ) /2  

The transformations (17) are related to (16) by the (anti-involution) transposition 
defined by - - - 
; = f  I = -  e h = a  b = - b  h = h  6 =  b (18) 

% 
Notice that the algebras (14), (15) are both invariant under i= a, d = E, b = -b, 6 =  

h It can be verified that (12), (13 )  are invariant under (16), (17) whereas the mixed 
commutation relations in (14), (15) are not. These latter, however, are invariant under 
transformations induced by a coproduct A' related to A ( 5 )  by A ' = A I ~ = ~  which can 
equip an %,(sl(lIl)) subalgebra. The transformations are given by 
" T I  - I " Z + I  L Z + >  A'" = ""=-I n'h = hn'-' 
Y - - " Y  Y v - " Y  Y " - " Y  Y "-".I 

eh = q l / 2  ae - ea = q-1l2ae - bq-'I2 

fi = q1I2hf+ 6qq-If2 f a  = q-'/'af (19) 
&= -q'/26e+hq-'/2 eb = -q-'/'be 

J6= -q1/z6J f b  = -q-1/2bf+ aq-'/2 

and leave invariant the quadratic expression 

$?= ha + 6b. (20) 
Using an R-matrix formalism, we have present5d the construction of covariant 

q-superoscillators algebras for %,(gl(lIl)). Once the R-matrix actingin p o p  is known, 

operators, combined with the requirement of associativity of the mixed products single 
out in each case two distinct q-oscillator algebras. The covariance properties of the 
oscillators are determined by the coproduct of the considered quantum universal 
enveloping algebra. 

In the one-parameter case, the two oscillator algebras we found coincide with those 
obtained in [6]. Our present approach makes their origin more transparent since it 
exhibits clearly the properties which lead to the various commutation relations. The 
present algorithm extends, rather easily, to more complicated superalgebras. In any 
case, the %,-covariance properties of the resulting systems of q-oscillators plays a key 
role in applications to statistical models or to superconformal theories 171. 

+Le :.-e.4..n:L:l:+., mn..:rnl.n-t ,.F +ha -..oAmtir nrnrl.nnc "f rmn+;nn fir Qnnihilntinn 
,,.C ,,L="".A"n.L,J .CyY"C."b"LL "1 L11V yYuulur... y'UYu'L" U& _.VU..".. U. Y..L ...... -.."I. 
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According to the properties ofgl(l I I ) ,  the above analysis could have been performed 
with creation (resp. annihilation) operators transforming under any irreducible (a, p # 
0)  representation (resp. transposed). Then, using 

qhlel)= q W  q'le;) = qE1ei), i =  I, 2 ele,)=O f le l )=Is)  

qhle2)= q"%) e led= [Pl,le,) f l e2 )=o  
(21) 

where le(), i = 1,2 are now basis vectors of the irfeducible ZD %,-module P ( - . ~ , ,  together 
with ( 5 )  and (bl), the expressions for R and R both acting in p ~ . + ~ @ p ~ ~ , E ~  are found 
to be 

R and 6 do not depend on a. It can be easily seen that d admits two doubly degenerate 
eigenvalues q' and -4 -O.  Then, selecting again the eigensubspace with eigenvalue qB, 
the condition (ii) (together with transposition) yields 

66-qs&=o ab - q-#ba = 0 G 2 = b 2 = 0  (23) 

from which the final requirement of associativity leads to two q-superoscillator algebras 
which can be obtained from (14), (15) just by changing q into qB. Again, the %,- 
covariance properties of the oscillators can be deduced from the action of ( 5 ) .  

Finally, we note that one can obtain a possible two-parameter extension of the 
results derived in this letter from a recently proposed two-parameter deformation of 
the uFiversal enveloping algebra of gl(lI1) [9]. The relevant R-matrix together with 
the R-matrix are [9] 

1 4  0 0 o \  
0 1  0 

0 q-p- '  4 p - I  : 1 R = \  0 0  0 p-1 

0 

R = P R =  (i q-;p-l 4p-I 0 (24b) 

\o 0 0 -p- l /  

d admits two doubly degenerate eigenvalues, -p-' and fq. 

obtain 
Requiring again that (&i, 66) is an eigenvector of R with eigenvalue +q, we 

n 6 - q h = o  6'=0 ( 2 5 )  

and by transposition 

ab-p-'ba=O b 2 = 0 .  
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Demanding further the associativity of the mixed products of oscillators, we obtain 
the following two-parameter qp-oscillator algebras 

Solution (I): equations (25), (26) 

ab-q-'Fa=O 

db -pbd = 0 (27) 
a5 -p-'q-'aa = 1 

b 6 + 6 b  = 1 -(I  -p- 'q- ' )do 

Solution (11): equations (25), (26) 

a6-p6a  = o  db-q - 'bd=O 

ad -pqda = 1 -(1 -pq)6b 

bb+ 6b = I 

which both reduce to (14), (15) when p =  q. 

We are very grateful to M Dubois-Violette for numerous discussions. We also thank 
I T Todorov for discussions and suggestions. 
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